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The instabilities that can arise in a stratified, rapidly rotating, magnetohydrodynamic
system such as the Earth’s core are often thought to play a key role in dynamo theory —
that is, in the study of how the magnetic field in the system is maintained in the face
of ohmic dissipation. An account of such instabilities is to be found in the M.A.C.-
wave theory of Braginsky (1967), who, however, laid his greatest emphasis on the
dissipationless modes, an idealization which leads to difficulties described below.
ohmic and thermal diffusion is therefore restored, and three key dimensionless para-
meters are isolated: ¢, the ratio of thermal to ohmic diffusivities; A, a measure of the
relative importance of Coriolis and magnetic forces; and R, a Rayleigh number,
which is here the ratio of buoyancy to Coriolis forces.

This study concentrates on a particular M.A.C.-wave model originally proposed
by Braginsky. It consists of a horizontal layer containing a uniform horizontal magnetic
field, B,, and rotated about the vertial, an adverse temperature gradient being main-
tained on the horizontal boundaries to provide the unstable density stratification.
In the rotationally dominant case of large A, the principle of the exchange of stabilities
holds, and the motions that arise in the marginal state are steady. The planform of
the convection is in rolls orthogonal to B,. If ¢ and A are sufficiently small the principle
of the exchange of stabilities remains valid, but the planform consists of one or other of
two families of rolls oblique to B,, or a combination of each. If ¢ is large but Aq is
small, the modes are again oblique, but overstability occurs, a type of oscillation
which also arises when ¢ is large and A takes intermediate values, although the motion
is then in rolls transverse to B,,.

A theory is developed for the weakly nonlinear convection that arises when R
exceeds only slightly the critical value Re(g, A) at which marginal convection occurs.
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288 P. H. ROBERTS AND K. STEWARTSON

A critical curve ¢ = ¢p,(A) is located which roughly divides the (¢, A) plane into regions
of small ¢ and of large ¢, although when ¢ is large it separates the large Ag from the
small. On the one side of the curve, where ¢ or A¢ are sufficiently small, it is concluded
that, starting from an arbitrary initial perturbation, the convection that arises when R
exceeds R will ultimately become a completely regular tesselated pattern filling the
horizontal plane. On the other side of the curve the situation is considerably more
complicated but it is argued that, for sufficiently large ¢ and Ag, subcritical instabilities
can occur and that supercritical bursting is likely; that is, the instability that arises
from the general initial perturbation will focus into a small spot in a finite time. The
relevance of the theory to sunspot formation is discussed.

In an appendix, the form of the weakly nonlinear convection that arises when ¢
differs only slightly from ¢, and R only slightly from R, is considered in situations
in which the exchange of stabilities holds.

1. INTRODUCTION

It is now generally believed that the existence of the geomagnetic field is a manifestation of
a finite amplitude instability of the Earth’s core. It is thought that some agency, perhaps thermal
or non-thermal convection, or perhaps precessional forces, drives the core into motion. A purely
hydrodynamic flow, unaccompanied by magnetic field, could result. In fact, however, this
solution is magnetically unstable, in the sense that any stray field is amplified by the induced
e.m.fs associated with the motion of the electrically conducting fluid in the core. As this field
increases, the Lorentz force it creates modifies and reduces the flow velocities until field growth
ceases, and a different state of balance with the driving forces is struck, one in which the magnetic
field is non-zero. This state is presumed to be quasi-stable, except possibly to a sufficiently large
perturbation that causes the entire field, B, to reverse (— B being as valid a solution to the
magnetohydrodynamic equations as + B).

Clearly, several questions deserve answers. First, it is necessary to explain why the non-
magnetic state should be magnetically unstable. This is the so-called ‘kinematic dynamo
problem’, which has received considerable attention in recent years. It is now known, in a general
way, what the strength and character of the fluid motions must be if they are to provide sufficient
dynamo action. It is necessary that the magnetic Reynolds number

Ry = UL[y = poUL (1.1)

should be ‘sufficiently large’. Here L is a typical length, U a typical relative velocity, x is the
permeability of the fluid, o is its conductivity, and # is its magnetic diffusivity. A significant
theoretical milestone was reached when it was realized that L is not necessarily the length scale,
Ly, of the motions, but is related to the length scale, Ly, of the field created. Not only could
a plausible theory be developed for cases in which Ly > Ly, but also astrophysical systems could
be observed, particularly the solar convection zone, which are magnetic and in which Ly > Ly.
A mathematical apparatus could be most readily built for cases in which the microscale Reynolds
number Ry = ULy/[y is small, the macroscale Reynolds number, R = ULy/y is large, and their
product is of order unity. In this way, Steenbeck, Krause & Radler (1966) could develop a theory
adumbrated by Parker (19555) to show that such flows could regenerate field if they possessed
sufficient helicity, that is if their velocity and vorticity were sufficiently correlated; they also
suggested mechanisms through which helicity might arise in rotating fluids. Their model of the
induction process was one in which the small-scale motions are turbulent in character, but this
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stochastic element is not-necessary, as was realized by Childress (1967) who, by examining
laminar tessalated flows, could provide a firm mathematical foundation to their theory; see
also Roberts (1970). The technique of expansion in powers of Ly/Ly as a small parameter is
now usually called ‘the two-scale method’.

Variants of the two-scale method exist in which large-scale motions are present, which assist
the dynamo to function. For example, in the so-called aw-dynamo process, a toroidal flow
creates a strong alined field by shearing the poloidal field lines (Elsasser 1947). Nevertheless, this
model, and all others referred to as two-scale dynamos, rely on the existence of induction on the
microscale, in this case to generate poloidal field from the toroidal.

Another successful approach to dynamo theory, one which proves that not all dynamos need
be of two-scales, is the asymptotic theory of induction at large magnetic Reynolds number
initiated by Braginsky (19644) and developed by Soward (1972) and Gubbins (1973). Induction
by small-scale motions is not invoked: Ly and Ly are comparable with the dimensions of the
fluid container, L, and the asymptotic theory for Rm —> o is successfully developed to the point
where dynamo action can be demonstrated in models (see, for example, Braginsky 19645;
Roberts 19724).

Despite the growing successes of the kinematic theory, it can only provide a part —and probably
the smaller part —of an understanding of the existence and stability of the magnetohydrodynamic
solution to which we referred in our opening paragraph. Plausible order of magnitude arguments
indicate that the Earth’s core is in a state of approximate magnetogeostrophic balance —that
is, the Lorentz, Coriolis and pressure forces balancet in the primary motion. The reason for this
is unknown. And, in particular, it is not understood why such a balance should be struck in
the Earth when, in another highly rotating system, the solar convection zone, the magnetic
forces are apparently not great enough to affect the primary flow seriously.

Since the kinematic induction problem is a necessary ingredient, it is natural that the initial
attacks on the magnetohydrodynamic problem have been either through two-scale models or
via Braginsky’s asymptotic method. Busse (1973) has constructed a dynamo in a Bénard layer
in which the convective motions are supplemented by a unidirectional plane Poiseuille flow
set up by an externally applied pressure gradient. The scale of the magnetic field generated is
large compared with the dimensions of the convection cells and the induction equation is
therefore amenable to the two-scale method. Busse showed that, if the Rayleigh number, R,
sufficiently exceeds the critical value, Re, necessary for thermal instability, amplification of field
will occur, and he determined the amplitude of the small steady-state field which could exist
when R — R is small. Childress & Soward (1972) and Soward (1974) examined a model which
is perhaps closer to the solar dynamo. The motions are set up in a highly rotating Bénard layer,
in which (cf. Chandrasekhar 1961, ch. 3) the horizontal size of the most unstable convection
cells is a small fraction, of under 7%, where 7 is the Taylor number, of the depth of the layer.
This difference in dimension allows a variant of the two-scale method to be invoked in a par-
ticularly natural way. Again magnetic instability was established for sufficiently large R — R.,

t The inertial forces are, however, weak. If, following the review by Roberts & Soward (1972), we take
V = 10~t mfs, B = 0.04 tesla, p = 10% kg/m® and L = 3.5x 10° m = the core radius, we find that the Lorentz
force B2[uL is about 4 x 10~¢ k[m? s?, while the Coriolis force p27 is about 7x 10-% kg/m? s2, where 2 is the
angular velocity. The Rossby number V[QL is, however, only 4x 1077, and the inertial. forces pV2[L only
3 x 10710 kg[m? s2. For future reference, we may note that the magnetic and thermal diffusivities are 9 == 3 m?[s
and k == 10~% m?[s, so that ¢ = k[ = 3 x 1078, Owing to the importance of the radiative conductivity, however,
¢ might be of order 10° in a star. Consideration of this case is deferred to §7 below.

35-2
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and again a theory for small steady-state fields was given for small R — R.. In both these models
magnetic fields had only small dynamical effects, and viscosity played as significant a part as
buoyancy in determining the motions.

Quite a different model was considered by Braginsky (1964¢, 1967) in relation to the Earth.
His starting point is a primary state of toroidal axisymmetric flow and magnetic field, the latter
being created from the former by shearing of the poloidal field. His asymptotic theory of induction
at large magnetic Reynolds numbers, Rnm, showed that asymmetric motions, with amplitude
only a small fraction, of order R%, of the primary zonal flow, could regenerate the poloidal field
from the toroidal. It was, then, necessary to find a dynamical reason for such motions. Braginsky
pictured these as magnetohydrodynamic instabilities of the primary state, and he made the
point, particularly significant in view of the well-known theorem of Cowling (1933), that such
instabilities would be expected to arise even when the state was stable to axisymmetric motions.
Unlike the constructs of Busse, Childress and Soward, the magnetic field of the Braginsky model
is not small, and the Magnetic (Lorentz) force is as potent as the Archimedean (buoyancy) force
driving the instability and as the Coriolis forces in determining the course of the instabilities,
a fact which led Braginsky to christen them ‘M.A.C.-waves’. Also, unlike the models of Busse,
Childress and Soward, the viscous forces have a negligible effect.

Braginsky developed an idealized model of M.A.C.-waves (1964¢) and later gave a general
theory for them (1967). The large values of Ry, inferred for the Earth, together with the success
of his large R, induction theory, led him to discount the effects of ohmic and thermalt diffusion
in his theory of M.A.C.-waves. This may be objected to on general grounds, as it alters the
physical characters of the phenomenon from one in which persistent motions are possible to
one in which any instability results in a single convulsion of overturning, together with associated
transients: contrast, for example, the behaviour of the Bénard layer, in which diffusion of
density occurs and in which viscosity provides a counter to buoyancy, to Rayleigh-Taylor
instability, in which motion occurs to bring about a stable density stratification when one does
not initially exist, a diffusion of vorticity and density playing no essential role.

A more mathematical objection may also be voiced, which for simplicity we will level against
his first simple model (Braginsky 1964¢, § 4). This consists of a plane horizontal layer, 0 < z < 4,
rotating about the vertical with uniform angular velocity, £, and containing a uniform primary
flow, V,, and an alined field, B,, both in the y-direction, which is taken to correspond to that of
increasing longitude, ¢, in the Earth’s core. A top-heavy gradient, pag, of density, p, is created
by an applied thermal gradient §, where « is the coefficient of volume expansion. Perturbation
solutions are sought proportional to exp [i(lx+my+nz+wt)]. Clearly boundary conditions
impose a discrete spectrum on z; for example, the vanishing of the normal velocity on z = 0
and z = d requires that z is an integral multiple of =/d. Recalling that ¢ is a periodic coordinate
in the core, it is also reasonable to suppose that m is an integral multiple for some basic quantity
nD~1, where D has the dimensions of length. The asymmetric wave-motions yield the dispersion
relation

w2 =

T dup? n?

m2B3 (1> +m?+n%) [m?BE  gaf(2+m?)
mp  (B4mPtn?) |

(1.2)

1 Braginsky has argued that the Earth’s core is driven by non-thermal buoyancy of light silicates released
when the ferrous components of the core fluid, in contact with the inner body, crystallizes onto its surface. This
view has been prompted by consideration of the relative inefficiency of thermal convection as a driving engine,
a topic outside the scope of this paper. We therefore adopt the simpler picture of thermal convection, and use
‘thermal diffusion’ rather than the coefficient of diffusion for a solute.
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which shows that the wave becomes unstable once
2, Tr
B} zm (B 4m?+n?)’
It is clear that the most unstable mode is given by m = =/D and [ = oo, irrespective of the
value of 7, i.e. there is an infinity of values of { and n for which unstable modes exist, no matter

by how little gafupD?/ B}t exceeds unity. Further, if one wishes to study the evolution of the
initial state of the fluid if unstable, then the mechanisms considered by Braginsky are insufficient

2,2
gapup mn (1.3)

since the growth involves very rapid oscillations in the x-direction and diffusive effects cannot
then be neglected. It seems likely that of these effects viscosity plays a subservient role and only
thermal and ohmic diffusivities are of significance in studies of relevance to the Earth’s core.
The dominant part played by magnetic forces in Braginsky’s theory must also be retained, in
contrast to the theories of Busse, Childress and Soward, since this too is the case in the Earth’s core.

The generalization of Braginsky’s linear theory to include thermal and ohmic dissipation
was carried out by Eltayeb (1972), whose results are remarkable and stand in contrast to those
of the diffusionless theory. For example, rotation plays no part in the stability criterion (1.3).
When diffusion is restored the criterion for instability for sufficiently strong fields and sufficiently
small values of ¢ = x/ (the ratio of the thermal and magnetic diffusivities) is that

afd?
R= 2gglin2 > 3,3, (1.4)

a condition which is independent of the field strength. The most unstable mode is associated
with finite values of /2+m?, which suggests that the forces neglected in deriving (1.4) are un-
likely to be significant. Moreover when the instability is marginal the growth rate of the critical
mode of disturbance is

gaf  3km?
203 42
which is also independent of the field. Other properties are set out in § 3 of the present paper.

Our intention here is to begin a study of the evolutionary properties of the instabilities dis-
covered by Eltayeb when the disturbances become sufficiently large for nonlinear effects to
be important. Our ultimate aim is, however, that of examining the prospects for regenerating
the applied magnetic field. As in Busse’s model, a sufficiently slow variation of field in the hori-
zontal will allow two-scale methods to be adopted, both for spatial modulation of the nonlinear
convection, and to the dynamo process to which it gives rise.

(1.5)

After formulating our problem mathematically in § 2, we summarize the theory of its linear
stability given by Eltayeb (1972) and develop his theory farther (§3). The evolution of weakly
nonlinear motions is described by the analysis of § 4, the results of which are divided, for clarity,
into the cases in which instability arises as aperiodic growth (§ 5) and those in which it arises as
an oscillation of increasing amplitude (§6). The results are discussed in the geophysical and
astrophysical contexts in § 7.

2. STATEMENT OF THE PROBLEM

We consider an inviscid fluid of constant conductivity, o, and thermal conductivity, «,
at rest between two rigid horizontal plates which are perfectly conducting in both the thermal
and electrical senses. We assume that the whole system is in uniform rotation, with angular

T See note added in proof on page 315.
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292 P. H ROBERTS AND K. STEWARTSON

velocity, £2, about the vertical. The plates are maintained at uniform temperatures 6, + 44,
where fd > 0, with the hotter plate beneath the colder. A uniform magnetic field, B,, acts in
a horizontal direction which is fixed relative to the rotating frame. (Such a field could, for example,
be generated by co-rotating external coils.) The fluid is Newtonian with equation of state

p* = polt —a(6* ~0,)], (2.1)

where p* is the density, 0* is the temperature, and p,, 6, and « are positive constants, the co-
efficient of volume expansion, a, being such that afid < 1 so that the Oberbeck-Boussinesq
approximation may be adopted. The temperature of the fluid at a distance z* below the plane

midway between the plates is
n* = 0,+ fz*, (2.2)

the plates themselves being z* = + 4d. This static state of the fluid is subjected at time ¢ = 0 to
an infinitesimal perturbation. We wish to examine the conditions under which this disturbance
is amplified, and to decide its ultimate fate.

Define an orthogonal set of axes Ox* y* z* relative to the rotating frame, with Oz* downwards,
Oy* in the direction of the applied field, and O in the mid-plane. Let the fluid velocity be V*
and the magnetic field be B*. Introduce dimensionless variables by the transformations

d d?
* o 4 * o=
¥ p—_—r g kn?m?”’
nmK
V* = —eV(ax,t), :
7 V(% (2.3)

B* = By[9+puokeB(%,1)],

d
0% = 00+ 2012 e ,1))

where o is the electrical conductivity of the fluid, g is its permeability, € is a small parameter

representing the magnitude of the disturbance applied at ¢ = 0, and z is an integer which we will

temporarily leave undetermined; later, it will emerge that the case n = 1 is of greatest interest.
The equations governing the motion of the fluid now assume the forms

divV =divB =0, (2.4a)

V26—V, —36/0t = e(V-V6), ' (2.4b)

OV/[0y+ V2B —¢0B[0t = —eqcurl (V x B), (2.4¢)

O0B/0y — A% x V — ARO% — grad IT + eg(curl B) x B = n%? (0V[ot+¢eV-VV). (2.4d)

Here A= i_—%%", = 2%:{%;2, q = pok, 0%= %’;, (2.5)
£ is a unit vector in the direction of the acceleration due to gravity, g, and

1T = [p* — (22d%py|2m°n®) (4 +y)] /9 B (2.6)

is the dimensionless reduced pressure. These are the standard equations of magnetohydro-
dynamics including buoyancy in the sense of Oberbeck & Boussinesq, but by implying that the
Ekman number 72n?v/£2d?, where v is the kinematic viscosity, is negligible, all viscous effects
have been excluded.
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The boundary conditions associated with (2.4) are that, at both z = — }nw and z = {aw,
V,=0, (2.7a)

since the velocity of the fluid normal to the plates must be zero at the plate;
0 =0, (2.70)
since the plates are perfect thermal conductors; and,

0B,[0z = 0B, [0z = B, = 0, (2.7¢)

since the plates are perfect electrical conductors. The conditions on ¥V, B and 6 for large x and
y are not so readily decided by the geophysical motivations of the study, but it is reasonable to
suppose that they should be periodic in x and y, or at least remain bounded as |x| and |y| become
infinite. I'tis perhaps worth noticing that, by using (2.7¢) and the equivalence of the divergence of
the Maxwell stress to the Lorentz force, we can then show that

© @ 3d
2 xj dx*f dy*f dz*(curl* B*) x B* = 0, (2.8)
— — o —3d
for all ¢.
Equations (2.4) and (2.7) form a predictive set from which the evolution of ¥, B and 6 can
be followed from an arbitrarily assigned critical state. We shall now, however, make an additional
assumption, namely that

8 <, (2.9)

and that the inertia terms on the right-hand side of (2.4d) are therefore negligible in comparison
with the Coriolis and Lorentz forces on the left. The geophysical plausibility of this assumption
was discussed briefly in § 1, but the more immediate question is whether, after the neglect of
0V/[otin (2.4d), the set (2.4) and (2.7) remains predictive. More precisely, assuming that (2.44) is
obeyed at time ¢ = 0, does the set determine ¥, B and 6 uniquely at later times?

It may be seen that, when (2.4d) lacks its right-hand side, it implies

1d
if dz* curl* [(curl* B*) x B*] = 0, (2.10)
—3d

for all £. In particular, (2.4) and (2.7) cannot determine the evolution of arbitrarily assigned
V, B and 0, but only those obeying (2.10). We will refer to (2.10) as ‘Taylor’s condition’,
although Taylor (1963) was primarily concerned with motions in a spherical container for
which a restriction less severe than (2.10) is necessary. Condition (2.10) may be contrasted with
(2.8). The latter must be obeyed by all initial centred disturbances, and is then automatically
satisfied at all later times. On the other hand, it is possible to envisage initial states which do
not obey (2.10), and whose evolution would then require the presence of the terms on the right-
hand side of (2.4d). We may expect, however, that in a time of order 84/g, Alfvén waves would
travel from the centre of disturbance leaving (2.10) obeyed in their wake. Thereafter (2.4)
and (2.7) would be a predictive set, even though the inertial terms in (2.4d) were neglected.

We should emphasize that (2.10) is automatically obeyed for the types of disturbance we
envisage below. The authors hope to consider more general solutions in which (2.10) is not
automatically satisfied, in a subsequent publication.
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3. LINEARIZED THEORY

The general aim of the investigation is to determine the fate of a small centred disturbance
made to the static equilibrium at a value of R slightly in excess of the critical value, Rc(g, A),
below which all infinitesimal disturbances die out, and above which small perturbations in
certain ranges of wavelength and wave direction are amplified. We wish to trace the evolution
of this small disturbance beyond the range of validity of the linear equations. We also hope to
decide whether a mean component of magnetic field will develop in the same direction as the
applied field, B, which might help to regenerate that field against ohmic dissipation if the
external coils were removed.

The first step in this programme is that of investigating the linear stability properties of the
static state. A number of such analyses in related geometries have been carried out by a number
of authors, but we wish to call particular attention to the study made by Eltayeb (1972) of the
model considered here; his paper also includes a useful list of references. To examine the stability
problem, we neglect ¢ in (2.4) and assume that all components of 6, ¥V, B and II are functions

of z multiplied b
P Y ¢t F, = eile+imy+iot (38.1)

where [/ and m are assigned constants and o is, it transpires, determined by the dispersion relation
ARmM?*k2(k? + 1 +iwg) = m*(k2+ 1) (B2 + 1 +iw) + A2(k2 + 1 +iwg)? (A2 + 1 +iw), (3.2)

where k% = [2+m? Marginal stability for the given / and m is obtained by setting Im () zero.
With ¢ and A fixed, this condition defines a discrete set of values of R of which we consider only
the one (n = 1) for which the corresponding value of gafd?/2Qx=? is least, for this mode is
the most readily excited to convection as f is increased. This R depends on / and m, and we
vary these until it takes it minimum value, R¢(g,A), which we call the critical value. If R is
increased from zero with ¢ and A fixed, some disturbances will amplify in time when R exceeds
R, and the static state is therefore necessarily unstable for R > R. It is found that there are two
distinct cases to be considered.

In the first, the value of w at marginal stability is zero, so that the instability at R, (= R, say)
arises in the manner conventionally known as the exchange of stabilities. Although we also
will use this terminology, it is here open to misinterpretation, for it will appear that the static
state can (for some ¢ and A) lose its stability to finite amplitude disturbances at values of R
smaller than R.. Similar behaviour is known in examples of penetrative convection (see, for
example, Moore & Weiss 1973). We find that there are two possibilities: first,

if A <2/y3, Reo=3y3, (3.3a)
independently of A. The corresponding values of / and m,
2=2-13, m®=A3, (3.30)

are non-zero, and for this reason we will refer to the convection as occurring in oblique rolls.
For small A, the rolls are almost parallel to the applied field. Secondly,

i A > 203, Ree= (m2+1) (m2+2)[21. (3.40)

The corresponding value of [ is zero, and for this reason we will refer to the convection as
occurring in cross-waves, the word ‘cross’ emphasizing that the axes of the convection rolls
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are perpendicular to the applied field. Their wave-number, m, is the only positive root of
mé = 2A%2(m?+1). (3.45)

In the second main case, @ is non-zero in the marginal state, so that the instability at Rc (= Reo,
say) arises through the mechanism conventionally known as overstability. Again there are two
possibilities: first,

if A< 2/[(14¢)y3], Reo = 64/3]g, (3.5q)
again independently of A. The corresponding values of / and m
P=2-A(1+q)y3, m*=2A(1+¢)y3, *=9(5*~-2)/¢" (3.50)

are again non-zero, and the description ‘oblique’ is once more appropriate. As for the corre-
sponding exchange mode (3.35), £ is 4/2. Secondly, overstable cross-waves (! = 0) can occur for
some values of A when ¢ > 1. Defining

Ao(g) = 2(¢*—1)E (¢ +1)7H (24>~ 1), (3.6)
we find that  if A5 = A > 2/[(14¢)4/3], Reo = (m2+1) (m2+2)/[Aq(1+¢)], (3.7a)
the corresponding values of m and w being given by

mé = 22%(1+¢)2(m2+1), w?= (m2+1)2(2¢2—2—m?)/(gm)2 (3.70)

The upper bound A, on A is determined by (3.75) and marks the vanishing of w2 Overstable
modes do not exist for A > A since, by (3.74), the corresponding w? are negative.

In this paper, we are mainly concerned with the nonlinear aspects of the marginal stability
problem, and it is important to decide in the linear range whether, as R is increased, instability
arises first through the exchange of stabilities or by overstability. It may be seen at once that,
since w? vanishes at A = A, for the overstable modes, and since R is a strict minimum over all /
and m for all modes with w? = 0, R¢, cannot be less than Rece when A = A,. Comparison of (3.3a)
and (3.5a) shows that Ree < Reo for all ¢ < 2 for which oblique overstability occurs, and the same
result in fact follows generally. Even when ¢ > 2, there is a range, A > Ag(¢), in which Ree < Reo.
The bound Ay(¢) may be determined by equating Ree and Reo, and (3.4 ) and (3.74) show readily
that Az — 3.273... as ¢ - oo, the corresponding value of R. being 6.546....

The salient features of the linear stability analysis are summarized in figure 1. Itis interesting
to note that the manifestation of the instability is not a continucus function of ¢ and A. At the
boundary A = Ay(¢) between the overstable and exchange regions of figure 1, there are two
neutrally stable modes for one of which w = 0 while for the other w # 0; the associated values of
m? are different. At neighbouring points on either side of the curve, one or other of these modes
becomes unstable first as R increases, the other remaining neutral or decaying.

No matter which mode is operative at the values of ¢, A and R selected, the linearized solution
of the governing equation takes the form

V= [— %2{1+% (k2+1 +1a)g)}smz, —%{m—% (k2+1 +1wq)}smz, Acosz]Elel“’t, (3.84)
imV.
Bu=miiriop (3.80)
Acosz .
On =it ri0 (3.80)

36 Vol. 277. A,
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296 P. H ROBERTS AND K. STEWARTSON

where 4 is a constant at present undetermined, and the suffices 11 have been added to the
variables in anticipation of the developments of the theory which follow.

Solutions for other values of # are similar to (3.8); for example, the cosz appearing in the
expression for 0, is replaced by coszz if # is odd, or by sinzz if z is even. It is now clear that n
is a number of free oscillations of the solution between the plates. Since, however, the critical
value of gafd?[2Qx=? for given [, m, ¢ and A increases with increasing n, it is not necessary to
consider modes for which n > 2.

A
1.8 :—-—R=5.4---‘——---j.---------—' _______

14

2/N3F
10f-

0.6~

0.2

| 3 ]
0 1 2 3 i ¢ 5 6 7

Ficure 1. A summary of the linear stability results. Overstability is possible only to the right of the dotted curve,
but is preferred only to the right of the full curve which starts at (2, 0) and asymptotes to A = 3.273... as
g = 0. On the left of this curve, the preferred mode is transverse to B, if A > 2/,/3 and is oblique otherwise.
On the right of the curve, transverse modes are preferred above the nearly horizontal line that asymptotes
to A = 0 for ¢ - 00; otherwise oblique modes are preferred. Some curves of constant Rayleigh number, R,
are given (dashed).

4, FINITE AMPLITUDE CONVECTION IN THE FORM OF SIMPLE ROLLS

The analysis presented in the last section shows that, as R increases for fixed ¢ and A, the
stability of the static conduction solution is lost at a critical value, R¢, of R which is given by
either (3.34), (3.44), (3.54) or (3.74), depending on which of the four domains shown in figure 1
the point (g, A) lies. At this value of R, the most unstable mode is given by (3.8). From a number
of studies of the evolution of small centred disturbances in a marginally unstable state (see,
for example, Stewartson & Stuart, 1971), we may expect a filtering process to ensue in which all
waves, except those that are marginally unstable, decay leaving at large times a wave-packet
consisting of the most unstable mode together with modes of neighbouring wave numbers. This
wave-packet will travel with the appropriate group velocity, and will grow exponentially in
central amplitude while simultaneously spreading out horizontally to distances proportional to /2.
Nonlinear effects must eventually modify this picture and, although one can anticipate the
general form which the disturbance is then likely to take, its detailed properties depend crucially
on the values of certain coefficients which must be evaluated before further progress can be made.
Our aim in this section is to derive some fundamental results of the nonlinear theory which are
basic to the understanding of the evolution of the centred disturbance when nonlinear effects
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become significant. For this purpose, we temporarily abandon the notion of a centred distur-
bance, and suppose that the linear disturbance is given by (3.8), added to its complex conjugate.

There are two points that should be borne in mind at this juncture. First, although the pre-
ferred direction introduced by the field has destroyed the degeneracy of the field-free case, in
which R depends on £ = /(I24m?) but not on //m, some indeterminancy remains for the oblique
modes: there are two families of rolls for which R; is the same, one in which /m > 0 and one in
which /m < 0. Similarly, for every overstable oblique and cross-mode there are apparently two
possible directions of wave motion, depending on the sign of (say) wm. Thus, for example, we
might expect that the temperature variation in the linear solution is given by

01 = —[—(k—zz—l%cos [wt + lx +my + o ], (4.1)
with additional similar terms in which the sign of / and/or w is opposite. (Here «, is a constant
phase.) It may be seen, however, that the centred disturbance will give rise to four wave-packets,
in the case of the oblique modes, or two in the case of the cross-modes, and that, by the time
their amplitude has become so large that nonlinear terms are important, they have become so
spatially separated that they may be treated independently. Thus we consider solutions of the
form (4.1) in isolation. It should be recognized that this, in the oblique exchange case, represents
a definite restriction on the class of initial disturbances considered.

Second, if R— R is small, equations (3.8) formally rule out the slow rate of growth of the
disturbance. This difficulty is avoided if we assume that 4 is a slowly varying function of .
Hitherto € has been introduced only as a small parameter, but we now define it precisely by
writing ¢ = R—R., (4.2)
and introduce a slow time-scale T =€ (4.3)
for variations of 4.

Following the method of Stuart (1958), we now consider how the nonlinear terms affect
the evolution of 4 at large times, ¢. We assume that all dependent variables, for instance 6, can
be expanded in the form

0 = 0y(z,7,€) +{01(2,7,€) Ey €t + 0,(z, 7, €) E3e?“* + ... + complex conjugate}.  (4.4)

We also assume that 6, and like components of the other dependent variables, can be expanded
in powers of ¢ in the form

Oy = €2045(2, T) +€303(2,7) + ...,
0, = €0,1(z,7) + €20,5(2, 7) +€30,5(2,7) + ..., (4.5)
0y = €055 (2, 7) +€30455(2,7) + ...

These forms, are now substituted into the governing equations (2.4) and the coeflicients of
the terms e*EP* (n=1,2,...; m = 0,1,2,...) are successively equated to zero. There results
a set of equations for the unknown functions (8, for example) which may be solved seriatim.
The full details of the analysis are too tedious for inclusion here; only the principal results are
recorded.

The first equations arise from the coeflicients of ¢£,, and are identical to those of the linear
theory of § 3. The appropriate solution is given by (3.8), with conjugate complex expressions

36-2
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added, and with A4 a function of 7 alone. Continuing the expansion, the next equations to arise
stem from the coeflicients of €2E£%, and are merely algebraic leading to the solution

Vap = —— (2K +iwg) By,

AgA2 e2iot
2mk*(k% + 1 +iwq)

04y = 0.

Bzz =

(_m, l) O))

From the coefficients of €2F, we simply obtain a solution proportional to that already derived
from the coeflicient of €¢£;, the proportionality factor being a slowly varying function of time.
We may, without loss of generality, absorb these ¢*E, terms into those of €E,, and therefore set
to zero all terms involving the pair 12 of suffices. From the coefficients of €2E£9 we obtain

2gw|A|?cos 2z

VOZ:—kZ[(k2+1)2+w2q2] (l,m, O)’
_ mq(k*+1)|A4|2cos2z[, A, Al ’
B = = s gy | T B me e (1,0, )
0 (k2+1) |4|?sin 2z
2 T[R40l

It is now seen that both the condition (2.8) on the Lorentz force and the Taylor condition (2.10)
are satisfied by (3.8).

To this point, the derivation of the various terms of (4.5) has been straightforward, but when
we consider the coefficients of €3£, we obtain a set of equations in which the homogeneous terms
(proportional to V5, By;or 05) are linearly dependent, because they are identical to those used
to obtain the linear solution (3.8). We obtain, in fact

im(curl Byy), + A 0V,4,/0z = Q, ¢t sin z + @, el* sin 3z,

im(k®+ 1) By, + A0(curl Vy,),/0z — Ak2R: 0,5 = Q, €'t cos z+ 0, elt cos 3z,

(k24 1+iw) 0,54 Vis, = Qg el cos z + Q4 €1t cos 3z, (4.8)
(k241 +iwq) By, —imV,g, = 1Q, el cos z +1Q, et cos 3z,

k2 +1 +iwg) (curl By), —im(curlV,), = iQ, et sin z +1Q, el sin 3z,
q 2 13)z 5 5

44 (k2 +1) (3k*+ 3 +iwg) ‘
where Q1 = [(k2+ 1)2+w2qz] [1 - 2(/€2+ 1‘|‘1(l)q) ]’
Q= N2d gemr(k 1) (R -3) [4]24
2T T T I4i0)  2[kET 1+ iwg] [+ )2+ o7

1 d4 k1 ig? .
= i s e - EE TR e A (49

0y = — mq dd  Pm[(F+1)*+iwg(k*—1)]
T (R4 14iwq) dr 2(R2+1+iwg) [(A2+ 1)+ w2¢?]

0 _i\gii_zél+/\q2[k4+8k‘“’—l-3—iwq(k2—1
> mdr 2m[ (k2 +1)2 + w?¢?]

4[24,

)] |A|2A,

with similar expressions for @,—@;, which, however, are not required, and are therefore not given.
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By linearly combining the terms on the left-hand sides of equations (4.8), we see that they are
soluble only if

2 2
A (1 +iog) Qu+ @+ he e WA Gy A

F+1tiw)  (kB+1 +iwq)+ﬁQ5 = 0. (4.10)

This consistency relation implies that 4 must satisfy a first-order differential equation, which
therefore controls the evolution of the nonlinear modal disturbance. Such equations have, of
course, been of common occurrence since the advent of the Landau-Stuart theory (see, for
example Stuart 1958). The coefficients of the various terms depend on which of the four regions
of figure 1 in which (g, A) lies. We shall consider these four cases in the next two sections.

5. EXCHANGE INSTABILITY

The linear theory of § 2 has shown that, when ¢ < 2 or when ¢ > 2 and A > Ag(g), marginally
unstable disturbances are non-oscillating, or —-as it is often said —the principle of the exchange
of stabilities is valid. Now (4.10) can be written as

dA/dr = d A+ k| A|? 4, (5.1)

where we have used the notation for the coefficients of 4, and %, which is usually adopted. In the
exchange case, these quantities are real, and

if A<2/y8, dy=1/y3, k = (2¢2—9)/18, (5.2a)
dy = 2A[m?+2 +¢q(m*—2)],
if A>2/3 v 242 (mb —m? — 2) — (m? + 1)2 (m2 + 2) (5.20)
L7 2m2+1)2[m2+2+q(m2-2)] °

where m is the only positive root of (3.45).

In order that the solution to (5.1), valid for 7 > 0, should match with the linearized solution
valid for ¢ - oo, we require that 4 should be equal to some constant 4, (say) at 7 = 0. The
differential equation is readily solved and, provided £; < 0, we find that

| 4| > (—dyfky)}, 70, (5.8)

irrespective of the value of 4,. This behaviour is often described by saying that the static state is
unstable to spectral evolution. The alternative behaviour, that arises when £; > 0, leads to an
infinite |4| at a finite value of £, and is often called catastrophic instability. According to (5.2),
the dividing case, &, = 0, is given by ¢ = 3//2if A < 2/y/3, and by A = Ay (¢) if A > 2/,/3, where
Ap(q) is obtained by eliminating m between (3.44) and

L (m241)2 (m2+2)
T mb-mi—2)

(5.4)

The curve A = Ap(g) is shown in figure 2. To its left, spectral evolution occurs, while to its right
the instability is catastrophic.

When £; > 0, finite amplitude subcritical solutions occur, which are unstable in the sense that
an initial disturbance of smaller amplitude reverts to the static conduction solution, while one
of slightly larger amplitude amplifies catastrophically. This is often taken to mean that, at
even larger amplitudes, stable steady nonlinear solutions exist. If we tentatively accept the
existence of these solutions, we see from figure 2 that they may well exist in regions of the gA-plane;
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for instance, those of large ¢ and A < 3.273, in which the linear theory indicates that over-
stability is preferred. We will encounter a similar paradox when studying the overstable modes
in § 6. Clearly, then, the initial state may, at sufficiently large ¢, follow very different courses
depending on whether it is of small or large amplitude. There is, of course, no possibility within
the framework of the present theory of discovering the fate of large amplitude disturbances, or
even locating the conjectured stable subcritical finite amplitude solutions. We will, therefore,
consistently take the view that the initial disturbance is small, while recognizing that this
assumption, though leading to a consistent picture, may not be representative of the behaviour
of the system when £, > 0 if the initial disturbance is of arbitrary amplitude.

14

10

06

-~
-
-~
- - e
e e
- - o

02f

. !
o 1 3 T ¢ 5 6 7

Figure 2. A summary of some nonlinear stability results. The full line A = A, (¢) is that on which either £; = 0

or Re &; = 0, depending on whether the curve lies in the stable or overstable regions (shown dashed for
case of reference with figure 1).

) e B

The case k£, > 0 also differs from the case £; < 0 in respect of the importance of spatial modula-
tion. We consider the evolution of the infinitesimal centred disturbance at marginally unstable
values of R. We suppose that we are in a domain of the gA-plane in which linear instability first
appears through the exchange of stabilities. An analysis parallel to that carried out by Stewartson
& Stuart (1971) for plane Poiseuille flow shows that the temperature, 0, takes the form

8, E, (bx® — 2hxy + ayz)} 3
0~ RC_T coszexp{dl(RmRe)t—- ab— )1 [1+0(t2)]

05 E, (bx? + 2hxy + ayz)} .
+Re——t— coszexp{a’l(R-Re)t—~ Hab— )1 [1+0(t%)], (5.5)

as t - oo, with ¥ and B being given similarly. Here
Ez — eilm-—imy, ( 5.6)

! and m are real and positive, and are given by (3.35) when A < 2/y/3; otherwise, { = 0 and m
is given by (3.45). In this case, the second term of (5.5) does not appear. The constants a, b, &
and d; are given by series expansion of iw, as given by (3.2), about R = R, { = l; and m = m:

i = dy(R—Re) — a(l—1o)>— b(m — me)® — 2h(I— L) (m—me). (5.7)
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Clearly ab > h2, by the condition that iw is a maximum at the critical state. In the present case,
a=2(2-2,3)/3,

if A<2/y3 {b=2(A2=A3+3)/A3, (5.8a)
h=(2—X,/3)% (21 —,/3)[A231,
a = (m*+1) (m®—2)[m*[m*+ 2 + q(m®—2)],

if A>2/y3 {b=4(2m?+3)[(m*+1)[m*+ 2+ q(m?—2)], (5.8b)
h =0,

we have

where m in (5.8) is given by (3.45). Finally, 8, and 0, are constants of order 1 which depend on
the precise specification of the initial centred disturbance.

The solution (5.5) clearly has the form of two wave-packets, each consisting of a family of
simple rolls whose amplitude is a maximum at the origin and decreases over a distance of
order 4/t to exponentially smaller values. As we have already stated, we have elected to consider
for A < 2/y/3, only those initial states for which &, = 0. We see that, although (2.8) is obeyed,
Taylor’s condition (2.10) is violated when 8, 8, + 0. This means that the evolution of the double
roll cannot, apparently, be treated in the framework of the present analysis. We will discuss this
case in a subsequent paper.

It is possible to generalize (5.1) at once to the case of spatial modulation by following a line
of reasoning similar to that taken by Stewartson & Stuart (1971) for plane Poiseuille flow. We

introduce new variables E=ex, 7=ey (5.9)

and allow 4 to be functions of § and # as well as 7. Then 4 satisfies the partial differential equation
2 2 2
%ij—a%—g—b%g~2h6%7=d1A+kllA|zA. (5.10)
As explained by Hocking, Stewartson & Stuart (1972), the extra terms in (5.10) arise because,
while A is small, the nonlinear term can be neglected and A4 will therefore evolve into a packet
composed of all waves in the neighbourhood of the critical rolls, specifically those in which
l—Il. and m —mc are both of order e. For this to be possible, the linear terms of any differential
equation satisfied by 4 mustlead to a dispersion relationship identical with (5.7). The derivatives
of 4 which must appear in (5.10) can therefore be written down at once. Higher derivatives with
respect to & or 9 in (5.10) correspond to higher powers of [ — [ and m —m, in the expansion of iw
from (3.2) and hence have coefficients of order €, which is negligible. The nonlinear term in (5.10)
must be the same as that of (5.1), because it is already of the same order as the linear terms, and
any differentiation with respect to £ on 5 would make contributions of relative order €, which
could again be neglected. This argument would require modification if there were a mean flow
of order €? generated by the linear terms, i.e. if ¥, contained a component whose mean value
with respect to z were non-zero (see Davey, Hocking & Stewartson 1974). Here, however,
Vys = 0 since w = 0, and the problem does not arise. We will also find (§6) that, even when
w # 0, the mean value of V, is zero and the difficulty is not encountered.
The appropriate initial and boundary conditions satisfied by 4 are

9 (bE€% — 2h&7 + an®)
4 N?e"p[‘ 4(ab—i2) 7

|4| -0, £*+9?— o0,

], as 70,
(5.11)

where &5 1s a small constant.
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Extensive studies have been made of solutions of (5.10) and (5.11); see Hocking et al. (1972),
Hocking & Stewartson (1971, 1972), Zakharov & Shabat (1972). These have revealed a number
of the properties of 4. We infer, in the present case of real coefficients, that, if £, < 0, | 4] will
tend to the constant limiting value (5.3) for all £ and # as 7 — oo. This shows that the classic
expectations of the principle of the exchange of stabilities are upheld when £, < 0, and that the
stability of the static solutions is lost to that of a more complicated dynamical state in which 4 is
constant, even though the initial disturbance was centred.

When £; > 0, the situation is very different, and the breakdown of the solution of (5.10)
and (5.11) as £ — oo is not at all the same as that of the solution of (5.1). In particular, it is not
true that |4| — oo for all £ and 7 at some finite value of 7, as would be the case if 4 were initially
independent of § and 5. The singularity in the solution occurs at one point only, namely § = = 0
for the initial condition (5.11). It should, of course, be remembered that the present theory can-
not be extended right up to |4| = oo, for the theory is only valid for ¢ < 1 and 4 finite, but it
nevertheless seems likely that the phenomenon reveals a substantial change in the character
of the flow and may even presage the onset of turbulence.

6. OVERSTABILITY

The linear theory of § 3 has shown that, when ¢ > 2 and A < Ag(g), marginally unstable dis-
turbances are oscillatory or—as it is often said - convection arises first as overstability. Again
an equation of the form (5.1) is obtained, but now the constants d; and %, are complex:

1 3i
= gl o)

1 ] 3i
2 902 — 603 |-
36(7=1) (q+1)2—q(3+5q)+wc(16+ 15 — 9¢% — 6q )],

i A <2/(149)y3
klz_“

if Ag(g) 2A2=2/(14+4q)43

m*(1+q) [ im41)
d, = [3m2—2+¢q(m?+2)] J[2(m2+1)] ‘1— Woqm® (m —2+2q)], (6.1a)
3 m?

T 4(m* 1) (¢*— 1) [Bm2— 2+ (m® + 2)]
x [¢{2m® — 3m* — 3m® — 4 + g(2m8 —m* — Im? — 4)} —i(m2+ 1)
X {2m8 + m® —m* 4 10m? + 8 + g(2m® 4 m® + 3m?* + 2m? 4 4)
+2¢2(m?+ 1) (2m* — bm? — 4) — ¢3(m?+ 1) (m*+ 2)}/wem?]. (6.15)

We see that, when the instability is in oblique rolls, the real part of £, is necessarily negative,
A remains bounded for all ¢, and, as ¢ — o0,

1
A~ ( - dﬁu)i exp {i (dn _ d") t+ constant} , (6.2)
klr klr
where the real and imaginary parts of k£, have been written £,, and £y;, respectively, and similarly
for d;. According to (6.2) there is a sense in which exchange of stabilities occurs at R = R,, but
the new solution is unsteady.
In the case of the cross-modes it is, according to (6.1), not necessarily true that the real part of
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k, is negative. Indeed, another branch of the curve A = Ay (¢) may be obtained by eliminating
m between the first of (3.75) and
(2m® — 3m* — 3m? — 4)
== (2m8 —m* — 9m?—4) ° (6.3)

This branch is also shown in figure 2. Below the curve A = A, (¢) spectral evolution occurs,
while above the instability is catastrophic.

These solutions may also be generalized to include initially centred infinitesimal disturbances.
Assuming that the compatibility condition (2.10) is satisfied, the evolutionary process filters
out, in a time ¢ = O(1), all but the most unstable oscillations of the linearized theory of §2.
Whent> 1, but 7 = €% < 1 (so that nonlinear terms have not had sufficient time to act sig-
nificantly), the disturbance has become concentrated into a number of wave-packets. If (3.54)
holds, there are four such packets, centred in the wave numbers / = + /. and m = + m. where,
according to (3.5b),

le =[2-A(1+q) 3]}, mec=[A(1+q)4/3]% (6.4)
the corresponding frequency being we = 3(¢2—2)%/q. In the wave-packet associated with +/¢
and +me, 0 takes the form '

0 ~ Re{(—?cosze@l[l +0(t—%)]>, v (6.5)

for large times, where

b(x-+1,0)? = 2h(x +u,0) (y +1,t) +aly + 1, 0)?

0, = 1wt +dy(R—Re) t+ilox +imey — d(ab—h?)¢

(6.6)
and &, is determined by the initial disturbance. The dispersion relationship relating w, / and m
is given by

i(w—we) = dy(R— Re) +iuy(l—le) +iu, (m —me) ,
—a(l—=1e)2=2h(l—1c) (m—me) —b(m—me)2+..., (6.7)

in the neighbourhood of (I,m) = (l,,mc). The new terms appearing in (6.7) that were not
present in (5.7) reflect the fact that variations in / and m, about their critical values for the over-
stable modes, alter the real part of w as well as the imaginary part, and we have chosen R so
that at the critical value of / and m the imaginary part of w is zero, and a maximum. It follows
that u, and u, are real. They are given by

Uy = 3(q%—3) lefwe g?  u, = 3[mi(q?—3) + 6(q> —1)]/we ¢*me, (6.8)

for A < 2/[(1+¢) 4/3]. It can readily be seen from (6.6) that the centre of the wave-packet (6.5)
moves from the origin with the group velocity ( —u,, —u,,0).

The fate of the three other wave-packets is similar, except for the change(s) in sign of /c and/or
me and hence, in virtue of (6.8), in direction of motion. At large times, each wave-packet is well
separated from the others, and its interaction with them is formally negligible. There is there-
fore no need to restrict ourselves to the equivalent of 6,8, = 0, as was done in § 5.

If Ay > A > 2/[(1+¢) /3], the critical value of / is zero, while those of R¢, mc and w. are given

by (3.7); also

Uy, =0, w, = 2(mg+1)[(3mg+2) (¢* — 1) —mc][we g*me. (6.9)

Now there are only two wave-packets but they travel in opposite directions, parallel and anti-
parallel to the y-axis, and therefore their interaction at large times can again be neglected.

37 Vol. 277. A,
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A parallel analysis to that of Davey et al. (1974) now shows that, since there is no mean flow
to order €%, the nonlinear evolution of the wave-packet, defined by +/; and +me, is given by
(5.10) except that the definition (5.9) must be replaced by

g = €(x+uwt)’ n = €(y+uyt)' (6'10)

All the coeflicients appearing in (5.10) are now complex. The properties of the solutions of
(5.10) have been extensively, but not completely, discussed by Hocking & Stewartson (1971,
1972). Two broad classes of disturbances were studied, the quasi two-dimensional and the
three-dimensional.

For the first of these, which we shall call ‘skewed-plane solutions’, it is supposed that A4 is
a function of = $,£+ f,7 and 7 alone, where 8, and f, are real constants, and it is required
that | 4| - 0 as £ - + c0. The governing equation for 4 now reduces to

04 _o0*4

B}‘—Q'a—gé-=dlA+k1|Ale, (6.11)
where @ = af2+ bf3+ 2hf, B, A full discussion of the fate of 4 as 7 increases in the case when
kir = Rek; > 0 has been given by Hocking & Stewartson (1972). They established that 4
becomes infinite in a centred burst at some finite time provided @ and £ satisfied certain condi-
tions of which the most important are that one or both of the inequalities

k3, — da ki kyfa, — Ky > 0, (6.12a)
(9 -+ 832/a2) K + 20, by k7, — K2y > 0, (6.120)

are obeyed. Except for a small domain, 4 remains finite for other values of @ and £,, and varies
in a quasi-random way while spreading out in the £ direction.

Hocking & Stewartson (1972) confined their discussion of the case £;, < 0 to real values of a.
It appeared that |4| then tends to a limit independent of £ provided £y;/£;, is not too large. The
special case of dissipationless problems, for which a, = b, = h, = d,, = k;, = 0, has received
extensive attention in connexion with a wide variety of situations arising in fluid mechanics and
plasma physics. It is known (see, for example, Hasimoto & Ono 1972) that the uniform limit
for the skewed-plane solutions is stable to long wave disturbances only if @;£;; > 0. This result
may be generalized. It may be shown that the conditions

Erklr_l'aikli < O’ klr < O, dlr > O’ (6'130’ b, 6)

are sufficient to ensure the stability of the &-independent solution, |4|? = —d,[k;,. Numerical
computations by Karpman & Krushkal (1968) have shown that the dissipationless solution is
unstable when @ k;; < 0, and breaks up into solitons. There is still little evidence to decide
how far (6.13) is sufficient to prevent the quasi-random behaviour reported by Hocking &
Stewartson (1972) for cases in which a@; = 0, k;, < 0 and |ky;/ky,| is large. Studies by Hayes (1973)
and by Davey & Stewartson (1974) show that, if all skewed-plane solutions are stable, then so
are the centred disturbances.

In the second class of solutions to which we referred above, 4 is required to vanish as £2 + 5% - oo
for all values of £/y. Being truly centred, these are of the greatest relevance in our case. Un-
fortunately studies of this class have not been pursued to the same depth as for the skewed-plane
solutions. If £;, > 0, it has been shown that, provided |ky;/£;,| is not too large, centred solutions
will burst at one point at a finite value of 7; if |ky; /£y, | is sufficiently large, the solutions thatremain
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finite at all times can be computed. No information is available for the case £,, < 0. We can
anticipate that the results for the skewed-plane solutions may be paralleled by similar behaviour
of the centred disturbances. Extensive numerical work will, however, be required before the
boundaries of the domains of bursting can be located as precisely in parameter space.

In applying the results of the general theory to our present problem, it is clearly of importance
to have values of g, b and 4 available when required. For any particular pair of values of g and A,
this is not difficult to achieve, one viable method being to solve (3.2) for R = R and (/,m) in
the neighbourhood of (I, mc), and to obtain a,b and # by differencing. The derivation of formal
algebraic expressions that are valid for all g and A would be tedious, and has not been attempted.
It is, however, relatively easy to find the leading terms in their expansions for large ¢. It is found
that ia, ib and i% approach finite real values for all A in the relevant range 0 < A < Ag. Although
the limiting values of a; and b; are positive, it may be shown that a;b; < £, if Ag < & 4/3. This
implies that, for two values of f;/8,, the ratio a/a; is infinite.

The following inferences about the solutions of (5.10) are now seen to be in order. If

A< 2/(1+q) 43,

ky, is negative for all ¢ and A, and as for the modal disturbances 4 remains finite for all 7. Given
any fixed ¢ and A, it is not possible to be certain whether | 4| approaches a limit as 7 — oo, without
determining the values of @, b and % and, in the event that (5.13) is obeyed, without carrying out
a numerical integration of (5.10). At large values of ¢, however, we know from the results stated
in the previous paragraph that a;, 6; and 4; are such that ; is finite and positive for all £;/f,
provided (64/3)/31g < A < Ag. Hence (6.12) is violated when ¢ is large, and we may conclude that
there is a substantial range of values of ¢ such that | 4| does not approach a limit as 7 — o neither
in the skewed-plane nor in the centred cases. If Ag < ./3, there is a range of values of 3,/8,
such that @; < 0, and this means that we cannot rule out the existence of a limit for |4} as 7 - o
for some skewed-plane solutions. Nevertheless |4| for the centred disturbances still does not
approach a limit as 7 = oo, since stability for centred disturbances requires all skewed-plane
disturbances to be stable.

Suppose 2/(1+¢)4/3 < A < Ag, and let gp(A) be the inverse of Ap(g). At the point (¢p, A)
in the (¢, A) plane, & is zero and therefore |8;| = |ki/kr| = co. In general, both inequalities (6.12)
are violated. Hence the solution remains finite at all times, but varies in a quasi-random way.
If ¢ is decreased with A held fixed, either 4 behaves quasi-randomly or |4| approaches a limit.
Itis plausible that the former occurs for larger g and the latter for smaller ¢. Since ki /k: = O(q~%) -0
as ¢ - 00, bursting must eventually occur if ¢ is increased with A held fixed. It is plausible that
a transition point exists in ¢y, < ¢ < 00 which separates quasi-random from bursting solutions.
These conclusions apply to skewed-plane disturbances, but the centred disturbances must behave
similarly, as was demonstrated by the analytical work reported by Hocking & Stewartson (1971).

We may summarize the fate of 4 for unstable disturbances in which the most rapidly increasing
in amplitude are oscillatory as follows. Such disturbances are only relevant if ¢ > 2 and A < Ag
and when ¢ lies in some neighbourhood of ¢ = 2, |4] tends to a limit as 7 — oo so that there is
in some sense an exchange of stabilities although the new state is not steady. As ¢ increases for
fixed A, 4 begins to take on a quasi-random behaviour while remaining finite, and at larger
values of g its fate is to burst. The bursting can only be avoided as g increases if A simultaneously — 0
so that A¢g remains finite.

37-2
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7. DiscussioN

Our objective in this paper has been to gain insight into the character of convection in a highly
rotating, highly magnetic, system of a kind that abounds in the cosmos. We have been particularly
interested in continuing the M. A.C.-wave theory of Braginsky (1964¢, 1967). Although Braginsky
(1967) was able to develop a very general formalism, that in principle recognized the approxi-
mately spherical structure of astrophysical applications, he investigated (Braginsky 1964¢) in
greatest depth a planar model which represented convection in the mid-latitudes of a spherical
system by a horizontal layer in a uniform gravitational field; the predominantly zonal field of
the spherical system was mimicked by a constant horizontal field, B,#, and only the Coriolis
forces arising from the component, £28, of angular velocity perpendicular to the layer was
recognized. The surface conditions necessary to complete the specification of the eigenvalue
problem were considered to have at most a modest qualitative effect on the spectrum, and dis-
cussion was confined to the analytically simplest cases; for example, when viscosity was included,
stress-firee boundaries were postulated.

Further aspects of this specific model have been studied in this paper, for it provides an almost
ideal medium by which to explore questions raised by Braginsky’s work, one of which provided
our motivation (see the introduction). These have led us to retain the effects of ohmic and thermal
dissipation, and to study solutions whose character is decided by three dimensionless parameters
R, A and ¢ defined in (2.5). The quantity A is a rough measure of the relative importance of
Coriolis and Lorentz forces, large values of A corresponding to the rotationally dominant case
and small values of A to the magnetically dominant one. The quantity ¢ measures the importance
of thermal diffusion relative to ohmic diffusion, small values of ¢ being relevant to a system such
as the Earth’s core which is resistively dominated, while large values of g are of interest in systems
like the Sun and stars in which radiative diffusion is large. The parameter R has the nature of
a Rayleigh number, and the linear stability of the system depends on whether R is greater or
less than a certain critical value, Re(g, A).

Braginsky placed his main emphasis on dissipationless systems in which therefore the quantity
Ry = RAg¢, independent of 7 and «, played the part of the R of our theory. Since A — 0 as diffusion
effects are ignored (i.e. as o — 00), it might at first sight seem that Braginsky’s results could be
readily obtained as a special case of our own. That the limit is not completely straightforward
may be appreciated by a simple observation: our results depend on the order in which the limits
7 — 0 and k — 0 are taken, or more generally on the ratio ¢ = /7 as either # or « vanish. Such
a situation is, of course, familiar in magnetohydrodynamics (see, for example, Stewartson 1960),
but it is one that is obviously excluded from a theory that discards % and « from the outset.
Moreover, for fixed ¢, the marginal state of the dissipationless theory occurs at a particular value
of Ry that is at an infinite value of R in the limit A — 0. The modes given by our theory, which
involves finite values of R, must therefore (in the limit A — 0) differ from, and be subcritical with
respect to, the modes of most interest in the diffusionless theory. This observation is related to
the difficulty emphasized in § 1. The diffusionless theory always indicates that the most unstable
modes are ones of infinite /; our theory in contrast predicts that /. is finite in the marginal state.
- The failure of the dissipationless theory to recognize ¢ seems all the more serious when the
dramatic dependence of our results on that parameter is recalled. For the geophysically interesting
case of small ¢, linear theory predicts that the principle of the exchange of stabilities is valid. For
the rotationally dominant case of large A, the critical mode is one of convection in rolls, of small
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horizontal scale, transverse to the applied field. For small A, the planform is, in general, the
rectangular pattern implied by two families of rolls at the same oblique angle to B,. In the
astrophysically interesting case of large ¢, the linear theory predicts that (unless A exceeds
3.273...) overstability will occur at criticality. For the rotationally dominant case of large Ag, the
critical mode consists of travelling waves transverse to B,¥, and moving in the positive and
negative y directions with a phase velocity of 2¢rk/d, their group velocities being 3 times greater.
For small Ag, the disturbance consists of four waves, one pair travelling in opposite senses along
one direction inclined to B, and the second pair along the other direction equally inclined to B,,.
Again the phase and group velocities are of order =«/d.

A main conclusion of Braginsky’s theory, that for slightly supercritical values of Ry the modes
with [ > 1 are the most unstable, strongly suggests that the controlling mechanism of the in-
stability growth is dissipative in some sense and seriously limits the value of a dissipationless
theory of its nonlinear development, quite apart from the mathematical difficulties inherent in
such a study. By contrast the linear analysis of the dissipative system, which followed Eltayeb
(1972), is immediately capable of extension to include nonlinear effects in marginally super-
critical regimes. Excluding only the case of mixed oblique modes that can occur at small values
of A, we have shown that the amplitude 4 of the convective motions is governed by (5.10), an
equation of a type that occurs with some frequency in non-linear stability theory. The constant
ky is of particular significance even to the linear stability theory. For, when £, is negative as in
the geophysically interesting case of small ¢, we may believe that the condition R < R, is both
necessary and sufficient for stability, and that (5.10) correctly gives the motions that will actually
occur for small positive R — R¢. This hope is strengthened by appeal to the analogous theory for
classical Bénard convection or for Couette flow. The present problem is, however, unusual in
that, as ¢ increases from 0 to oo, the system undergoes a gradual transition from this type of
behaviour to another more reminiscent of instability in parallel flows. A transition point
¢ = qp(A) is reached at which %, or Re (k,) vanishes. For ¢ > ¢y, the condition R < R. is at most
necessary for stability and it may be expected that the system is in fact unstable throughout
arange Rm < R < Re, provided the initial disturbance exceeds a certain critical amplitude that
depends on R. Itis not improbable that Rp, is considerably smaller than R. when ¢ is large. There
is at present time no general analytical method known by which such subcritical motions can be
determined, and Rnm located. The present problem is, however, remarkable in providing an
exceptional case susceptible to proper analytic treatment. Few examples of this are known to us.
If Ap(g) denotes the inverse of ¢p(A), it is possible to show that, when A — Ay, is of order /| R — Rq|
the amplitude of weakly nonlinear disturbances is of order |R—Rc|t and is governed by an
equation of the form (A 18). The theory is developed, for the exchange of stability case only,
in the Appendix.

Another interesting aspect of the instabilities for ¢ > ¢y, is that of bursting, that is a strong
tendency of an initial perturbation to refocus into a concentrated disturbance somewhat re-
sembling the turbulent spots observed in shear flows. It would serve no useful purpose here to
describe again the diverse behaviours possible at different ¢ and A, according to § 6. Instead we
offer a few remarks about their possible astrophysical significance, taking the Sun as principal
example and first summarizing an idealized theory of the solar cycle.

The existence of a quasi-regularly reversing solar field with a period as short as 22 years strongly
suggests that the field itselfis created by a dynamo process driven by turbulence in the convection
zone. Unlike the case of the Earth, the magnetic energy density in the zone seems to be small
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compared with the kinetic. The field exerts comparatively little reaction on the flow, and shows
a greater degree of randomness. For example, it is not uncommon for flux of both signs (in and
out) to emerge from a polar cap, the net signed flux being perhaps only 10 % of the net unsigned
flux (see Stenflo 1972; Howard 1972). Asin other instances of turbulence, theory has concentrated
on attempts to understand the behaviour of the average field. (Strictly this average is taken over
an ensemble of identical Suns, but in effect it is the average over a number of repetitions of the
solar cycle.) Steenbeck et al. (1966) initiated the study of a new subject, mean field electrodynamic,
with which to describe the behaviour of the averaged magnetic field. Steenbeck & Krause (1966)
used this theory to construct a number of models of the mean solar field some of which repro-
duced the principal features of the solar cycle with remarkable fidelity (see also Roberts 19724).

Broadly, the mean field models of Steenbeck & Krause (1966) can be pictured as a combina-
tion of two processes. First, a comparatively weak poloidal field, symmetric with respect to the
solar rotation axis, is sheared by mean differential zonal flows prevailing in the convection zone
and forms a toroidal field of increasing strength. This is the analogue of the way by which
toroidal field is thought to be generated in the Earth (Elsasser 1947), and which was mentioned
in § 1 in connexion with the aw-dynamos; it appears that Professor T. G. Cowling was aware
of its significance in solar dynamo theory at about the same time. In the second process of the
Steenbeck—Krause dynamo, the fields induced by the turbulence from the toroidal field interact
with the turbulence itself to create a mean poloidal field of opposite polarity. The two processes
are repeated with all fields oppositely directed to complete the cycle.

The second of the processes just described, that of creating poloidal field from toroidal, requires
the emergence of new flux from the solar surface, and it is interesting to note that emerging
flux regions (e.f.rs) are frequently seen on the solar surface (see Zirin 1972; Frazier 1972; Vorpahl
1973) Parker (1955a) was the first to suggest that ‘magnetic buoyancy’ might be responsible.
He pointed out that the high radiative conductivity prevailing in the Sun would tend to equalize
the temperatures inside and outside any isolated tube of magnetic flux that happened to form
in the convection zone. Since, however, mechanical equilibrium ensures equality of total pressure
(thatis, the sum of gas pressure and magnetic pressure), the gas density inside the flux tube would,
according to the gas law, be less than that of the surroundings. The flux tube would therefore
experience a buoyancy force upwards, and be brought to the solar surface, with an emergence of
its flux. The argument can similarly explain how a loop of toroidal flux can break through the
solar surface as an e.f.r. Sunspots occur, on this picture, when for some reason the flux contained
in the rising tube is highly concentrated. Although Parker’s theory is the one that has won
greatest acceptance, the present work prompts us to raise two points.

The first concerns the physical process itself. Even though the theory of magnetic buoyancy
does recognize thermal diffusion —essentially « is regarded as infinite —the mode of maximum
instability is found to be of zero wavelength perpendicular to the field, i.e. /o = 0o (cf. Gilman
1970). The analogy with the results for the dissipationless M.A.C.-waves is impressive and suggests
that a totally satisfactory theory of magnetic buoyancy, and particularly of its nonlinear aspects,
will require other diffusive effects to be restored. In our opinion, particular interest attaches to
the finite amplitude theory, for to our knowledge no adequate account has so far been given of
the process through which a perturbation, which was presumably at first dispersed over large
areas of the solar surface, becomes concentrated into sunspots perhaps in a manner reminiscent
of the appearance of turbulent spots in turbulent shear flows. We may conjecture that the
enormous size of ¢ near stellar surfaces will favour overstability and bursting irrespective of
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whether the buoyancy mechanism is magnetic or thermal, and that this provides the basic
reason for the highly localized form of sunspots. It has sometimes been suggested that a parallel
phenomenon occurs in the Earth and that particularly the larger fluctuations in the length of
the day are created by the magnetic stress of ‘core spots’ erupting through the base of the mantle
(see, for example, Roberts 1972 6). This view seems less attractive after the analysis of this paper,
bearing in mind the probability that ¢ is tiny in the core.

Our second observation is that astrophysical circumstances may exist in which the vertical
gradients of toroidal field are insufficiently large for significant magnetic buoyancy, and in which
the diffusive M.A.C.-wave instabilities of the present paper provide the instabilities necessary
to regenerate the poloidal field. We may note particularly that, like the magnetic buoyancy
process, the system becomes increasingly unstable as the toroidal field strengthens. [Equations
(3.5) and (3.7) show that for fixed ¢, the Rayleigh number ¢gR appropriate for large ¢, decreases
monotonically with Ag from 2Aq at large A, to 3./3 for small A.) Thus, like magnetic buoyancy,
the process possesses the desirable characteristic of leaving the layer stable until the toroidal field
has grown to an amplitude sufficient to recreate an appreciable poloidal field.

While we believe that the present model is of theoretical interest, combining as it does so
many diverse features of other stability problems, it is clear that, like the M.A.C.-wave theory
from which it arose, it provokes a number of further questions. In particular, the significance of
the Taylor condition (2.10), the relevance of the model to processes of field generation and of
sunspot formalism requires further attention: we hope to consider these in future studies.

We wish to thank Emeritus Professor T. G. Cowling, F.R.S., for helpful correspondence about
the solar dynamo (§ 7). Our thanks are also due to an anonymous referee for his constructive
criticisms.
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APPENDIX. WEAKLY NONLINEAR SOLUTIONS NEAR THE CRITICAL CURVE
A = Ap(¢) FOR VALUES OF ¢ FOR WHICH THE PRINCIPLE OF THE
EXCHANGE OF STABILITIES HOLDS

For simplicity we at first suppose that A = A (g) so that, by definition, £, is zero, and the terms
proportional to [4]|?4 in (5.1) and (5.10) are absent. Finite amplitude effects now occur at the
level |4|*4, and it is convenient to adopt a different definition of ¢, replacing (4.2), (4.3) and
(5.9) by

et =|R—Re|, 7=¢€% £E=¢c% n=cY, (A1)

which, however, in terms of R— R leaves the large length and time scales unaltered. It is
necessary to continue expansions such as (4.4) to order €% and to apply the consistency condition
(4.10) at that level. In the case of 6, the terms required in the expansion are

0 = (041 E; + 05, ETY) cos z + €2(0yy 5in 2z + Oy E2 + 05 E72)
+ 63 [ (013 E, + 05 ErY) cosz+ (013 Fy + 07 ET ) cos 8z + (033 2 + 043 E3) cos z]
- 64(0y, $i1 22+ Opy B3 + O35 Er?) + 6(0,5 Ey + 0% B cos 2. (A 2)

In order to display the explicit dependence of the coefficients on z, we have here adopted a nota-
tion that differs in a small but obvious way from (4.4) and (4.5). From now onwards we revert to
the old notation. Some of the terms shown in (A 2), namely 0,,, 6,5 and 6,,, happen to be zero,
but are given since corresponding terms for ¥V and B do not vanish. Terms which make no
contribution to the consistency condition are not given. For example, it is clear that terms
proportional to e*Ej and e*E7* exist, but (whether zero or not) they cannot make a contribution
to 0,5 etc. It is less evident, but in fact true, that terms proportional to ¢*E7sin 2z and ¢*£; 2sin 2z
though present play no part in the consistency condition: the same is true of all similar terms in
the expansions of the other variables. In future, similar irrelevant terms will be omitted from
the working without comment.

The first and second order solutions have already been presented in (3.8), (4.6) and (4.7) above.
We now proceed to third order. We have

(K2 +1) 013+ Vg, = (k2 + 1)1 | 4|2 A cos z, (A 3a)

(k2 + 1) Byg,—imlyg, = — }i(k2+ 1)~ ¢>m|A|% A cos z, (A 3b)
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(K2 +1) f1g, — imwyg, = 3im=2 (k2 + 1) "2 Ag2(k* + 8k% + 3) |4|2 4 sin z, (A 3¢)
imfyg, + AW, [0z = — $(k2+ 1)"2Ag?(3k2+ 1) |4|? Asin z, (A 3d)

im(k2+ 1) Byg, + A 0wy, [0z — NE2Ro Oy = — (K2 +1)-2?m2(k* — 3) |A|2 A cosz, (A 3e
g

where @ = curl ¥V and j = curl B. These equations are soluble since the consistency condition is
obeyed by supposition, and for the same reason they possess an infinity of solutions all of which
lead to the same final equation (A 18) governing A. Without loss of generality we may take
Vis, = 0 and obtain

ig2(kt— 2k2— 1) |A|2 4

Vo= == (m —b O)sinz, (A 4a)
2. 2 B 2 2
B, =— 2%;&';4_!_ 1[‘)[2 l{l+/\(3km+ 1): sin z, {m—— /—\ﬁ?ifn——z—l—l)} sin z, 12 cos z] , (A 4b)
424
15 = —é—(lkzl_l_—l—)—zcosz. (A 4c)

Turning to the terms distinguished by the tilde, we obtain

(k2+9) O3+ Vyg, = 3(R2+ 1)1 | 4|2 A cos 3z, (A 5a)
(k2+9) By, —imVyq, = — 3i(k2 + 1)1 ¢2m| 4|2 4 cos 3z, (A 55)
(K*+9) J1g, — im@yg, = $m—riAg?| A|? A sin 3z, (A 5¢)
Mg, + A0V 15,/0z = — $(R2 + 1)~ A¢?| 4|2 4 sin 3z, (A 5d)
im| (k2 +9) Blg, + A 00,/0z — NE2Re g = — 3 (k2 +1)~2 g2m2(k2 — 3) |A|2 A cos 3z. (A be)
Writing, for brevity D = i[mt+ X2(k2+7) (k2+13)], (A 6)
we find that the solution of (A 5) is
Vi =H;€—i‘%§?+%@m, %%3—2 - ]‘C—i B3 17132], (A7)
Bus = [ g+ T o = g o B (A7)
Vise = {— 3[m*+ 22(k2+ 1)] + (k2 + 9) (K2 + 1) =2 [m?(k2 — 1) — 3A2(k% + 1) (A2 —3)]}
x D|A|? A cos 3z, (A 7¢)
Brgy = {3(R2+9) [+ A2(k2+ 1)] — g2(K% + 1) =2 [m4(3k® + 59k + 173k — 267)
—X2(k2+1)3 (k2 — 3)]} Am—2 D| 4|® A sin 3z, (A 7d)
By, = {— Hmd+ A2k + 1)] + g2(k2 + 1) 2 [m3(k* + 4k2 — 13) — A2(k2 + 1)
x (7Tk* + 98k2 + 283) 1} im (k2 + 9) 1 D| 4|2 4 cos 3z, (A Te)
Frae = {3[mt+ A2(k2 +1)] — g2(K% + 1) -2 [m4(3k* + 202 — 31) — A2(k2 +1)2 (13k2 + 121)]}
xi/\m“lDNIAIZAsin 3z, (A 7f)
O3, = (3[m*+9A2(k2+ 9)] — *(k® + 1)~ [m* (k2 — 1) ~ BA2(K* + 1) (k*—3)]}
x (k2+1)~1 D) A|2 A cos 3z. (A7g)

38 Vol. 277. A,
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312 P. H. ROBERTS AND K. STEWARTSON

The final set of equations posed at the third level are

(942 +1) Og3+Vy5, = 0, (A 8a)

(942 + 1) Byy, — 3imlgg, = 0, (A 8b)

(9K2 + 1) jgg, — Bim wgy, = 3im'(k2+ 1)"2Ag*(k? — 1) A3sin z, (A 8¢)

3im Jgg, + A Way,[0z = 3(k%2+ 1)~2 A¢243sin 2, (A 8d)

3im(9k2 + 1) Bgs, + A 055,02 — 9Ak2R, 055 = 0. (A 8e)

Writing for brevity D = 3(k2+1)-2[81k*m* — 2A2(9%% + 5)], (A 9)

we find that the solution to (A 8) is

B =[5 i?’fz o 5 52 g P (& 101
Vas, = — ¢2(6k2—1) (92 + 1) DA3cos z, (A 10¢)
Wgs, = IM™2Ag2(6k% — 1) [A2(k2+ 1)% — 8k2m?] DA3sin z, (A 10d)
Bgs, = — 31A%¢*m(6k%— 1) DA3cos z, (A 10e)
Jage = im™1 Ag?[ — 108k2m* 4- A2(18k* + 23k2 + 13)] DA3sin z, (A 10f)
053 = A%q2(6k%—1) DA3cos z. (A 10g)

We next consider the fourth order equations. It happens (see above) to be necessary to solve
only the equations for 0,, etc., and the terms independent of z in 0,,, etc. We obtain

Voa = (el + fim, am — fl, 0) cos 2z, (A 11a)
By, = (yl+dm, ym—&’, 0) cos 2z, (A 11)
Ooa = ¢sin 2z, (A 11¢)
where
_ 2ig® |4t 2qA* ~ _2qmd*
- (k> +1)3 BPm /\k2(k2 ) 1) J1sss (A 12aq)
8qmA*
:8 /\k2(k2+ I)Bl3z: (A 121))
g®m|A|4 1igAd* mA*
Y= 2k2(kzl+|1) + qkz 13z_k2%k2+ 1) V13z: (A 126)
§  ¢PA(3k2+1) |A]4 igA(K2+1) A* 4 IqA* gAd* o gmA*
0 = 2m(k2+ 1)3 - om2k2 1827 o2 Jis.+ omk? V13z+k2(k2+1) Wq3,, (A 12d)
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4 A* A* .
¢ = m+'—2* 18T 3EET) Vise (A 12¢)
In (A 12), and in (A 14) below, we understand that the functions of z are extracted from B, etc.
before substitution.

The second relevant set of equations yield

V24 = ?ﬁ(m, _15 0): B24 = X(ma —"la 0)5 024 =0, (A 13)
where
= _igPA(4k - K2 1) |4|* 42 igAd* igA*
= SRR+ 1) miRE % T GRR(EE T 1) V5%
Ak —1) A* g(3k2+1) A% .
( 6m3k2 33z 6m/s2(/s2+ 1) ]33z) <A 144)

PA(2k2 + 1) |A|2A2+1g/\A*B igd*
T T B+ 1)5  emikE 0T GRE(RE 4 1)U

(A 14b)

We are now in a position to proceed to the fifth order. The set of equations governing 6y,
etc. are of the same form as (4.8) but, to the @, to @, given by (4.9) we must add @} to @, where

,_ qmk*A [A(R*+1) | 2qmk2A* ig®m|A|? [2/\ (k2+1) N *A(Bk2+1)]4]% 4
Ql = 2(k2+1)[ m2 7+28 (k2+1) —X— (k2+1) m2 B13z—.]13z:|+ 4(k2+ 1)3 )
(A 15aq)
,_qmkA(k2—3) A ig®m(k*+45) |A|? 5 ¢'m?(k2—3) |4]* 4
=Sy Yt emen et T aErys (A 158)
. k24 |42 &
Q3 = '2(k—2_‘}_T) ¢+2(k2+ 1) V13z: (A 150)
,_ igk*mA L S T
Q4'—_(2k2+1)a+ 2 Y 2(k2+1) V13z5 (A 15‘1)
. igmk2A [A(K? + 1) ] quA[ (B2+1) o« o gn., 2igmA*
O =~y |~ e VT —QQkAX‘m*”
g?m|A|? [2A(k2+1) o - Ak —4k2 — .
BEIGCES) po 132+ @z, | + —__———_2m(/s2+ 1 |A| A. (A 15e)

We now relax our initial restriction that £, is zero. Denoting by ¢y, (1) the value of ¢ for which
ky is zero, we suppose that ¢ — gy, is small, or more precisely that

9—qp = §|R—Re|, (A 16)
so that |ky] = & (A) |[R—Re| where & = £(0k,/0q),,. (A 17)

On substitution of (4.9), amended by (A 15), into (4.10), we now obtain in place of (5.1) the
equation

%4 =+ di A+ A2 A+1,|4]2 4, (A 18)

38-2
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314 P. HROBERTS AND K. STEWARTSON

where the first + takes the sign of R — R, and the second the sign of ¢ — ¢, (i.e. the sign of &),
d, and &, are positive and

[A(q+1) (k24 1) = (g — 1) m] 9,
= — g X2[18k2mA(2Th2 +7) — A2(108KS + 164k + T9K2 + 15)]
{2k + 1)4[81A%m* — 2A2(9k2 + 5) |} + [[m® + A2(k2 + 1)]
s {(k2+ 9)[ (K2 + 11) m® + X2(19k* + 254%2 + 811)] + 8q(k2+7) [m® + A2(k2 + 1)]
— 2¢2(k2 4 1)~ [m*(6kS + k65k% + 176k2 — 139) — A2(k2 + 1) (9K + 127k* + 203k2 — 1451)]
— 16¢3(K% + 1) 2 [mA(kS + 1154+ 1Th2 — 73) — A2(k2 +7) (TKS + 103k% + 33742 + 49)]}
+ 4qh (k2 4 1)=2 [m8(3k8 + 31kS + TTh: — 3142 — 272)
— A2m?2(21k10 4 480k8 4 350645 + 9224k* + 6065k — 4976)
— 8AY(BK12 4 T4K10 + 546KS + 67246 — 4413k% — 296242 — 656)]]
+{32(k2 4+ 1)2 (K24 9) [m + A2(K2 4+ 7) (K2 + 13)]}, (A 19)

an expression in which ¢ must be set equal to ¢y,

laf

@ Rk R O R T R

 §
A A

k1>0,7]1>0
?‘ 0
L 1
\\
. W > —————
© R. R @) R. R

Ficure 3. Properties of solutions of equation (A 18) in different cases. Dotted curves indicate linearly unstable
solutions. Question marks suggest regions in which the theory fails to give valid solutions because |A4|? is
too great.

It is worth reviewing the properties of solutions to (A 19). One admissible steady-state solu-
tion is 4 = 0, and this is linearly unstable if R > Re, and stable if R < Re. If 9; < 0, R < R,
and /; < 0, the only admissible steady solution, bearing in mind that |4]? cannot be negative,
is 4 = 0 and it is stable: similarly if 9; > 0, R > Rc and £, > 0, only 4 = 0 is possible, but it is
unstable. If #; < 0 and R > R, there is, in addition to the unstable solution 4 = 0, a stable
solution. The same is true if #; > 0 and R < R, but in this case the new solution is unstable,
and 4 = 0 is stable. Finally, if 9, < 0, R < R, and &, > 0, there are in all three solutions, but
(apart from 4 = 0) only the solution

|A|2 =[& \/(5%_4‘]1'771')]/2'771! (A 20)
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FINITE AMPLITUDE CONVECTION 315

of the larger amplitude is stable: if 4, > 0, R > R and &; < 0, only that of smaller amplitude is
stable. The possible steady states are sketched in figure 3, the unstable states being shown dashed.
It is found that, in the case of oblique rolls (A < 2/,/3) the constant £, is negative and

gl = x/zglg)
89 (195471 —96606,/2)
ky = —3qat 26133 ~ —1.8471 < 0. (A 21)

If, in contrast, we consider the transverse rolls in the limit of large m, we obtain

._ﬂ/2"1 ~ —2
k= 8/\W2 ~ 0.03661A2 > 0, (A 22)

Thus each of the situations depicted in figure 3 pertain for some A.

Note added in proof, 16 August 1974.

Professor R. Hide has kindly pointed out to us that the statement made in the first complete
sentence of p. 291 rests on (1.2) which is not a uniformly valid approximation to the dispersion
relation when /—>o0 since inertial effects, neglected in deriving (1.2), may then become
significant. The interplay between inertial and diffusive effects in modifying (1.2) is quite
subtle and beyond the scope of this paper but our standpoint is consistent provided we inter-
pret the neglect of inertial terms and the retention of diffusive effects to mean, in the notation
of (2.5), that 6 -0 while R, A, ¢ remain finite. Braginsky’s result (1.2) then follows on letting
R— o0 and A—0, holding ¢ finite. The necessity for considering finite values of A and R
arises because w?/é? is real finite and negative when (1.3) is satisfied but —— o0 as I/n—> 0.

It is observed that although this argument provided the motivation for our present study,
it transpired that a new resistive mode was of greater significance than the waves of the type
governed by (1.2) when modified by diffusion. In other words, stability is controlled by a
separate branch of the dispersion relation.
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